解得:v=1.0m/s
(2)碰后A、B一起压缩弹簧至最短,设弹簧压缩量为x1,由动能定理有:
解得:x1=0.02m
设反弹后A、B滑行了x2距离后速度减为零,由动能定理得:
解得:x2≈0.05m
以后,因为qE>μ(M+m)g,滑块还会向左运动,但弹开的距离将逐渐变小,所以,最大距离为:
S=x2+s-x1=0.05m+0.05m-0.02m=0.08m.
6.如图所示,两个完全相同质量为m 的木板A、B 置于水平面上。它们的间距s=2.88m,质量为2m、大小可以忽略的物块C 置于A 板的左端。C 与A 之间的动摩擦因数为=0.22,A、B 与水平面之间的动摩擦因数=0.10,最大静摩擦力可认为等于滑动摩擦力。开始时,三个物体处于静止状态,现给C 施加一个水平向右,大小为mg的恒力F,假定A、B 碰撞时间很短且碰撞后粘连在一起,要使C 最终不脱离木板,每块木板的长度最少要为多少?
解析:在A,B碰撞之前,A,C间的最大静摩擦力为2mg=0.44mg,大于C所受到的外力0.4mg,因此,A,C之间无相对运动。所以A,C可作为一个整体。碰撞前A,C的速度可以用动能定理求出。
碰撞之后,A,B具有共同的速度,C的速度不变。A,C间发生相对运动。并且根据题意,A,B,C系统所受的摩擦力等于F,因此系统所受的合外力为零。可运用动量守恒定理求出C刚好不脱离木板的系统最终的共同速度。然后,运用能量守恒定律求出A,B的长度,即C与A,B发生相对位移的距离。
由于F小于A,C间最大静摩擦力,所以A,C无相对运动。