当b>1时,
f(-2b)=f(2b)≥4b2-2b-1>4b-2b-1>b,
f(0)=1
所以存在x1∈(-2b,0),x2∈(0,2b),使得f(x1)=f(x2)=b.
由于函数f(x)在区间(-∞,0)和(0,+∞)上均单调,所以当b>1时曲线y=f(x)与直线y=b有且仅有两个不同交点.
综上可知,如果曲线y=f(x)与直线y=b有两个不同交点,那么b的取值范围是(1,+∞).
利用导数研究函数的单调性
考查方式 利用导数研究函数的单调性是导数最重要的应用之一.主要考查求函数的单调区间、证明或判断函数的单调性,在高考命题中,若以填空题的形式出现,难度则以中低档为主,若以解答题形式出现,难度则以中等偏上为主. 备考指要 利用导数的符号判断函数的单调性是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合思想.在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中,只能在定义域内,通过讨论导数的符号,来判断函数的单调区间.
特别要注意写单调区间时,区间之间用"和"或","隔开,绝对不能用"∪"连接 .
[例3] (山东高考)已知函数f(x)=ax2+bx-ln x(a,b∈R).
(1)设a≥0,求f(x)的单调区间;
(2)设a>0,且对任意x>0,f(x)≥f(1).试比较ln a与-2b的大小.
[解] (1)由f(x)=ax2+bx-ln x,x∈(0,+∞),
得f′(x)=.
①当a=0时,f′(x)=.
(ⅰ)若b≤0,当x>0时,f′(x)<0恒成立,
所以函数f(x)的单调递减区间是(0,+∞).
(ⅱ)若b>0,当0