此装置一起以速度v0向右滑动.另一质量也为M的滑块静止于上述装置的右侧.当两滑块相撞后,便粘在一起向右运动,则小球此时的运动速度是多少?
组织学生认真读题,并给三分钟思考时间.
(1)提问学生解答方案,可能出现的错误有:在碰撞过程中水平动量守恒,设碰后共同速度为v,则有
(M+m)v0+0=(2M+m)v.
解得,小球速度
(2)教师明确表示此种解法是错误的,提醒学生注意碰撞的特点:即宏观没有位移,速度发生变化,然后要求学生们寻找错误的原因.
(3)总结归纳学生的解答,明确以下的研究方法:
①碰撞之前滑块与小球做匀速直线运动,悬线处于竖直方向.
②两个滑块碰撞时间极其短暂,碰撞前、后瞬间相比,滑块及小球的宏观位置都没有发生改变,因此悬线仍保持竖直方向.
③碰撞前后悬线都保持竖直方向,因此碰撞过程中,悬线不可能给小球以水平方向的作用力,因此小球的水平速度不变.
④结论是:小球未参与滑块之间的完全非弹性碰撞,小球的速度保持为v0.
(4)小结:由于碰撞中宏观无位移,所以在有些问题中,不是所有物体都参与了碰撞过程,在遇到具体问题时一定要注意分析与区别.
2.展示投影片,其内容如下:
如图所示,质量为m的小球被长为L的轻绳拴住,轻绳的一端固定在O点,将小球拉到绳子拉直并与水平面成θ角的位置上,将小球由静止释放,则小球经过最低点时的即时速度是多大?
组织学生认真读题,并给三分钟思考时间.
(1)提问学生解答方法,可能出现的错误有:认为轻绳的拉力不做功,因此过程中机械能守恒,以最低点为重力势能的零点,有
得
(2)引导学生分析物理过程.
第一阶段,小球做自由落体运动,直到轻绳位于水平面以下,与水平面成θ角的位置处为止.在这一阶段,小球只受重力作用,机械能守恒成立.
下一阶段,轻绳绷直,拉住小球做竖直面上的圆周运动,直到小球来到最低点,在此