的解。例如点,等,即不符合"曲线上的点的坐标都是方程的解"这一结论;第(2)题中,尽管"曲线上的点的坐标都是方程的解",但是以方程的解为坐标的点却不全在曲线C上。例如、等,即不符合"以这个方程的解为坐标的点都在曲线上"这一结论;第(3)题中,则既有以方程的解坐标的点,如、等不在曲线C上,又有曲线C上的点,如、等的坐标不是方程的解。事实上,(1)、(2)、(3)中各方程所表示的曲线应该是如图所示的三种情况。
学 ]
(1) (2) (3)
上面我们既观察、分析了完整地用方程表示曲线,用曲线表示方程的例1;又观察、分析了例2中所出现的方程与曲线间所建立的不完整的对立关系。假如我们把例1这种能完整地表示曲线的方程称为"曲线的方程"的话,我们完全有条件自己给"曲线的方程"下个定义了。
在下定义时,针对例2(1)中"曲线上混有其坐标不是方程的解的点",以及(2)中"以方程的解为坐标的点不在曲线上"的情况,对"曲线的方程"应作何规定?
为了不使曲线上混有其坐标不是方程的解的点,必须规定"
"曲线上的点的坐标都是方程的解";为了防止以方程的解为坐标的点不在曲线上,必须规定"以这个方程的解为坐标的点都是曲线上的点"
这样我们可以对"曲线的方程"、"方程的曲线"下这样的定义:
在直角坐标系中,如果某曲线C上的点与一个二元方程的实数解建立了如下关系:
(1) 曲线上的点的坐标都是方程的解;
(2) 以这个方程的解为坐标的点都是曲线上的点。
那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
大家熟知,曲线可以看作是由点组成的集合,记作C;一个二元方程的解可以作为点的坐标,因此二元方程的解集也描述了一个点集,记作F。请大家思考:如何用集合C和F间的关系来表述"曲线的方程"和"方程的曲线"定义中的两个关系?进而重新认识"曲线的方程"和"方程的