是矢量.
(3)方向:与速度变化的方向相同,与速度的方向关系不确定.
(4)υ-t图像中图线的斜率表示加速度.
重点难点例析
一、关于位移和路程的区别与联系问题
1.位移是矢量,是从初位置指向末位置的有向线段,它着重描述了物体的位置变化;而路程是标量,是物体运动轨迹的总长度,它强调了物体运动的过程.
2.确定位移时,只需确定物体运动的初、末位置,不需考虑物体运动的实际路径;确定路程时,必须考虑物体运动的具体路径.
3.一般情况下,位移的大小不等于路程,只有当物体做单向直线运动时路程才等于位移的大小.
【例1】如图1-1-1所示,甲图中用一根细长的弹簧系着一个小球,放在光滑的桌面上,手握小球把弹簧拉长,放手后小球便左右来回运动,B为小球向右到达的最远位置.小球向右经过中间位置O时开始计时,其经过各点的时刻如乙图所示.若测得OA=OC=7cm,AB=3cm,则:
(1)分别以O和A 为坐标原点建立坐标系,方向均以向右为正方向填写以下表格.
坐标
原点的设置 0时刻的坐标 0.2s
时刻的坐标 0.4s
时刻的坐标 0.6s
时刻的坐标 0.8s
时刻的坐标 1.0s
时刻的坐标 以O为原点 以A为原点 (2) 0.2s内小球发生的位移大小是 ,方向 ,经过的路程是 .
(3) 0.6s内小球发生的位移大小是 ,方向 ,经过的路程是 .
(4) 0.8s内小球发生的位移大小是 ,经过的路程是 .
(5) 1.0s内小球发生的位移大小是 ,方向 ,经过的路程是 .
【解析】对应各个时刻,找到小球的位置,根据选定的正方向可确定坐标,如下表所示.
坐标
原点的设置 0时刻的坐标 0.2s
时刻的坐标 0.4s
时刻的坐标 0.6s
时刻的坐标 0.8s
时刻的坐标 1.0s
时刻的坐标 以O为原点 0 7 cm 10 cm 7 cm 0 -7 cm 以A为原点 -7 cm 0 3 cm 0 -7 cm -14 cm
根据Δx=x2-x1,可确定位移的大小和方向,如以A为原点时,1s内小球的位移Δx=(―14)cm―(-7)cm=-7cm,即大小为7cm,方向向左.路程可由相应时间内轨迹长度相累加得到.
【答案】各空对应数据如下:(2) 7cm 向右 7cm (3) 7cm 向右 13cm (4) 0 20cm (5) 7cm 向左 27cm
【点拨】位移和路程的确定与坐标原点的选择无关,可任选一栏求解.
* 拓展
某同学从学校的门口A处开始散步,先向南走了50m到达B处,再向东走了100m到达C 处,最后又向北走了150m到达D处,则:
(1)此人散步的总路程和位移各是多少?
(2)要比较确切地表示这人散步过程中的各个位置,应采用什么数学手段较妥,分别应如何表示?
(3)要比较确切地表示此人散步的位置变化,应用位移还是路程?
【解析】 (1) 这人散步的总路程为
s=(50+100+150)m=300m.
画图如图1-1-2所示,位移大小为
x==m,
且tanα=1, α=45°,即位移方向为东偏北45°.