当时,,当时,;
或当时,,当时,.
由知是的一个极值点,则,
所以,又由,得,故.
例4.(2006年安徽卷)若曲线的一条切线与直线垂直,则的方程为( )
A. B.
C. D.
[考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力.
[解答过程]与直线垂直的直线为,即在某一点的导数为4,而,所以在(1,1)处导数为4,此点的切线为.
故选A.
例5. ( 2006年重庆卷)过坐标原点且与x2+y2 -4x+2y+=0相切的直线的方程为 ( )
A.y=-3x或y=x B. y=-3x或y=-x C.y=-3x或y=-x D. y=3x或y=x
[考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力.
[解答过程]解法1:设切线的方程为
又
故选A.
解法2:由解法1知切点坐标为由
故选A.
例6.已知两抛物线, 取何值时,有且只有一条公切线