(2)设双曲线的方程为mx2+ny2=1(mn<0),
则解得
∴双曲线的标准方程为-=1.
反思与感悟 待定系数法求方程的步骤
(1)定型:即确定双曲线的焦点所在的坐标轴是x轴还是y轴.
(2)设方程:根据焦点位置设出相应的标准方程的形式:
①若不知道焦点的位置,则进行讨论,或设双曲线的方程为Ax2+By2=1(AB<0);
②与双曲线-=1(a>0,b>0)共焦点的双曲线的标准方程可设为-=1(-b2 (3)计算:利用题中条件列出方程组,求出相关值. (4)结论:写出双曲线的标准方程. 跟踪训练1 (1)求以椭圆+=1的短轴的两个端点为焦点,且过点A(4,-5)的双曲线的标准方程; (2)已知双曲线过P,Q两点,求双曲线的标准方程. 考点 双曲线的标准方程的求法 题点 待定系数法求双曲线的标准方程 解 (1)由题意,知双曲线的两焦点为F1(0,-3),F2(0,3). 设双曲线方程为-=1(a>0,b>0), 将点A(4,-5)代入双曲线方程,得-=1. 又a2+b2=9,解得a2=5,b2=4, 所以双曲线的标准方程为-=1. (2)若焦点在x轴上, 设双曲线的方程为-=1(a>0,b>0),