2019-2020学年人教B版选修2-1 2.5 直线与圆锥曲线作业
2019-2020学年人教B版选修2-1 2.5 直线与圆锥曲线作业第3页

  将y=x-1代入①并整理得

  (7-2a2)x2+2a2x-a2(8-a2)=0,

  ∴x1+x2=-(2a^2)/(7"-" 2a^2 ),

  由已知得-(2a^2)/(7"-" 2a^2 )=-2/3×2,解得a2=2,

  故双曲线的方程为 x^2/2-y^2/5=1.

答案:D

★5.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率k的取值范围是(  )

A.["-" 1/2 "," 1/2]B.[-2,2]

C.[-1,1] D.[-4,4]

解析:由已知,得直线l的方程为y=k(x+2),与抛物线方程联立方程组,整理得ky2-8y+16k=0.当k=0时,直线与抛物线有一个交点.当k≠0时,由Δ=64-64k2≥0,解得-1≤k≤1.所以-1≤k≤1,k≠0.综上得-1≤k≤1.

答案:C

6.直线l过抛物线y2=ax的焦点,并且垂直于x轴,若直线l被抛物线截得的线段长为4,则a=     .

解析:抛物线y2=ax的焦点为(a/4 "," 0),所以直线l与抛物线的两个交点坐标是(a/4 "," a/2)和(a/4 ",-" a/2),

  所以|a/2 "-" ("-" a/2)|=4,解得a=±4.

答案:±4

7.已知椭圆C:y^2/a^2 +x^2/b^2 =1(a>b>0)的右顶点为A(1,0),过椭圆C的焦点且垂直长轴的弦长为1,则椭圆C的方程为     .

解析:由题意得{■(b=1"," @2"·" b^2/a=1"," )┤

  ∴{■(a=2"," @b=1"." )┤故所求的椭圆方程为 y^2/4+x2=1.

答案:y^2/4+x2=1

8.设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-√3,那么|PF|=     .