(2)解:由(1),得an+1-an=2n(n∈N+),
∴an=(an-an-1)+(an-1-an-2)+...+(a2-a1)+a1
=2n-1+2n-2+...+2+1=2n-1(n∈N+).
(3)证明:∵4b1-14b2-1...4bn-1=(an+1)bn,
∴4[(b1+b2+...+bn)-n]=2nbn.
∴2[(b1+b2+...+bn)-n]=nbn,①
2[(b1+b2+...+bn+bn+1)-(n+1)]=(n+1)bn+1.②
②-①,得2(bn+1-1)=(n+1)bn+1-nbn,
即(n-1)bn+1-nbn+2=0,③
nbn+2-(n+1)bn+1+2=0.④
④-③,得nbn+2-2nbn+1+nbn=0,
即bn+2-2bn+1+bn=0,
∴bn+2-bn+1=bn+1-bn(n∈N+).
∴{bn}为等差数列.