就叫做点的极坐标。
(1)一般情况下,不特别加以说明时表示非负数;
当时表示极点;
当时,点的位置这样确定:作射线,使,在的反向延长线上取一点,使得,点即为所求的点。
(2)点与点()所表示的是同一个点,即角与的终边是相同的。
综上所述,在极坐标系中,点与其点的极坐标之间不是一一对应而是一对多的对应,即,
, 均表示同一个点.
3. 极坐标与直角坐标的互化
当极坐标系与直角坐标系在特定条件下(①极点与原点重合;②极轴与轴正半轴重合;③长度单位相同),平面上一个点的极坐标和直角坐标有如下关系:
直角坐标化极坐标:;
极坐标化直角坐标:.
此即在两个坐标系下,同一个点的两种坐标间的互化关系.
4. 直线的极坐标方程:
(1)过极点倾斜角为的直线:或写成及.
(2)过垂直于极轴的直线:
5. 圆的极坐标方程:
(1)以极点为圆心,为半径的圆:.
(2)若,,以为直径的圆:
要点二:参数方程
1. 概念:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数:
,并且对于的每一个允许值,方程所确定的点都在这条曲线上,那么方程就叫做这条曲线的参数方程,联系间的关系的变数叫做参变数(简称参数).
相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普