【试题分析】: T组成的数列为1,0,0,0,0,1, 0,0,0,0,1, 0,0,0,0,1......(k=1,2,3,4......)。一一带入计算得:数列为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5......;数列为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4.......因此,第6棵树种在 (1,2),第2008棵树种在(3, 402)。
【高考考点】: 数列的通项
【易错提醒】: 前几项的规律找错
【备考提示】: 创新题大家都没有遇到过,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到解题方法。
2.(四川卷文16)设数列中,,则通项 ___________。
【解】:∵ ∴,,
,,,,
将以上各式相加得:
故应填;
(三)解答题(共1题)
1.(福建卷文20)已知{an}是正数组成的数列,a1=1,且点()(nN*)在函数y=x2+1的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若列数{bn}满足b1=1,bn+1=bn+,求证:bn ·bn+2<b2n+1.
本小题考查等差数列、等比数列等基本知识,考查转化与化归思想,推理与运算能力.
解法一:
(Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1,
所以数列{an}是以1为首项,公差为1的等差数列.
故an=1+(a-1)×1=n.
(Ⅱ)由(Ⅰ)知:an=n从而bn+1-bn=2n.
bn=(bn-bn-1)+(bn-1-bn-2)+···+(b2-b1)+b1
=2n-1+2n-2+···+2+1==2n-1.
因为bn·bn+2-b=(2n-1)(2n+2-1)-(2n-1-1)2
=(22n+2-2n+2-2n+1)-(22n+2-2-2n+1-1)
=-5·2n+4·2n