-4+5+...+2003-2004i)=(2003-1001)+(1001-2004)i=1002-1003i.
解法二:∵(1-2i)+(-2+3i)=-1+i,
(3-4i)+(-4+5i)=-1+i,
...... 学 ]
(2001-2002i)+(-2002+2003)i=-1+i. 学 ]
相加得(共有1001个式子):
原式=1001(-1+i)+(2003-2004i)
=(2003-1001)+(1001-2004)i=1002-1003i
二.复数代数形式的加减运算的几何意义
复数的加(减)法 (a+bi)±(c+di)=(a±c)+(b±d)i.
与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减).
1.复平面内的点平面向量
2. 复数平面向量
3.复数加法的几何意义:
设复数 1=a+bi, 2=c+di,在复平面上所对应的向量为、,即、的坐标形式为=(a,b),=(c,d)以、为邻边作平行四边形O 1 2,则对角线O 对应的向量是,
∴= +=(a,b)+(c,d)=(a+c,b+d)