=.
答案:
7.解:法一:方程9x2+5y2=45可化为+=1.
则焦点是F1(0,2),F2(0,-2).
设椭圆方程为+=1(a>b>0),
∵M在椭圆上,∴2a=|MF1|+|MF2|
=+
=(2-)+(2+)
=4,
∴a=2,即a2=12.
∴b2=a2-c2=12-4=8.
∴椭圆的标准方程为+=1.
法二:由题意知,焦点F1(0,2),F2(0,-2),则
设所求椭圆方程为+=1(λ>0),
将x=2,y=代入,得+=1,
解得λ=8,λ=-2(舍去).
所求椭圆方程为+=1.
8.解:由题意知,a=2,b=1,c=,|PF1|+|PF2|=4.①
在△F1PF2中,
|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°,
即12=|PF1|2+|PF2|2-|PF1||PF2|.②
①2得:|PF1|2+|PF2|2+2|PF1||PF2|=16.③
由②③得:|PF1||PF2|=.
∴S△F1PF2=|PF1||PF2|sin 60°=××=.