5.如图,平面α∥平面β,过平面α,β外一点P引直线l1分别交平面α,平面β于A,B两点,PA=2,AB=6,引直线l2分别交平面α,平面β于C,D两点,已知BD=4,则AC的长等于( )
A.2 B.1
C.4 D.3
B [由l1∩l2=P,知l1,l2确定一个平面γ,
由⇒AC∥BD⇒=,
∴=,
解得AC=1.]
二、填空题
6.如图,正方体ABCDA1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.
[因为直线EF∥平面AB1C,EF平面ABCD,且平面AB1C∩平面ABCD=AC,所以EF∥AC,又因为E是DA的中点,所以F是DC的中点,由中位线定理可得:EF=AC,又因为在正方体ABCDA1B1C1D1中,AB=2,所以AC=2,所以EF=.]
7.设m、n是平面α外的两条直线,给出三个论断:
①m∥n;②m∥α;③n∥α.以其中的两个为条件,余下的一个为结论,构成三个命题,写出你认为正确的一个命题:________.(用序号表示)
①②⇒③(或①③⇒②) [①②⇒③.
设过m的平面β与α交于l.
∵m∥α,∴m∥l,∵m∥n,∴n∥l,∵nα,lα,∴n∥α.]
8.已知a,b表示两条直线,α,β,γ表示三个不重合的平面,给出下列命题:
①若α∩γ=a,β∩γ=b,且a∥b,则α∥β;
②若a,b相交且都在α,β外,a∥α,b∥β,则α∥β;