6.已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos∠AFB等于( )
A. 4/5 B.3/5 C.-3/5 D.-4/5
解析:由{■(y^2=4x"," @y=2x"-" 4"," )┤得x2-5x+4=0,
∴x=1或x=4.
不妨设A(4,4),B(1,-2),则|(FA) ⃗|=5,|(FB) ⃗|=2,(FA) ⃗·(FB) ⃗=(3,4)·(0,-2)=-8.
∴cos∠AFB=((FA) ⃗"·" (FB) ⃗)/("|" (FA) ⃗"||" (FB) ⃗"|" )=("-" 8)/10=-4/5.
答案:D
7.已知直线x-y+1=0与抛物线y=ax2相切,则a= .
解析:由{■(x"-" y+1=0"," @y=ax^2 "," )┤得ax2-x-1=0.
∵a≠0,∴Δ=1+4a=0,a=-1/4.
答案:-1/4
8.直线y=x-1被抛物线y2=4x截得的线段的中点坐标是 .
解析:将y=x-1代入y2=4x,
整理,得x2-6x+1=0.
由根与系数的关系,得x1+x2=6,(x_1+x_2)/2=3,
则 (y_1+y_2)/2=(x_1+x_2 "-" 2)/2=(6"-" 2)/2=2.
故所求点的坐标为(3,2).
答案:(3,2)
9.求抛物线y=4x2上到直线y=4x-5的距离最短的点的坐标.
解:由y=4x2与y=4x-5不相交,设与y=4x-5平行的直线方程为y=4x+m.
则{■(y=4x^2 "," @y=4x+m)┤⇒4x2-4x-m=0.0①
设此直线与抛物线相切,则Δ=0,
即Δ=16+16m=0,解得m=-1.
将m=-1代入①式,得x=1/2,y=1,
所求点的坐标为(1/2 "," 1).